Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase.

نویسندگان

  • Scot C Leary
  • Brett A Kaufman
  • Giovanna Pellecchia
  • Guy-Hellen Guercin
  • Andre Mattman
  • Michaela Jaksch
  • Eric A Shoubridge
چکیده

Human SCO1 and SCO2 are paralogous genes that code for metallochaperone proteins with essential, but poorly understood, roles in copper delivery to cytochrome c oxidase (COX). Mutations in these genes produce tissue-specific COX deficiencies associated with distinct clinical phenotypes, although both are ubiquitously expressed. To investigate the molecular function of the SCO proteins, we characterized the mitochondrial copper delivery pathway in SCO1 and SCO2 patient backgrounds. Immunoblot analysis of patient cell lines showed reduced levels of the mutant proteins, resulting in a defect in COX assembly, and the appearance of a common assembly intermediate. Overexpression of the metallochaperone COX17 rescued the COX deficiency in SCO2 patient cells but not in SCO1 patient cells. Overexpression of either wild-type SCO protein in the reciprocal patient background resulted in a dominant-negative phenotype, suggesting a physical interaction between SCO1 and SCO2. Chimeric proteins, constructed from the C-terminal copper-binding and N-terminal matrix domains of the two SCO proteins failed to complement the COX deficiency in either patient background, but mapped the dominant-negative phenotype in the SCO2 background to the N-terminal domain of SCO1, the most divergent part of the two SCO proteins. Our results demonstrate that the human SCO proteins have non-overlapping, cooperative functions in mitochondrial copper delivery. Size exclusion chromatography suggests that both the proteins function as homodimers. We propose a model in which COX17 delivers copper to SCO2, which in turn transfers it directly to the CuA site at an early stage of COX assembly in a reaction that is facilitated by SCO1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ddh197 1839..1848

Human SCO1 and SCO2 are paralogous genes that code for metallochaperone proteins with essential, but poorly understood, roles in copper delivery to cytochrome c oxidase (COX). Mutations in these genes produce tissue-specific COX deficiencies associated with distinct clinical phenotypes, although both are ubiquitously expressed. To investigate the molecular function of the SCO proteins, we chara...

متن کامل

COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis

Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specif...

متن کامل

Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1.

Human SCO1 and SCO2 code for essential metallochaperones with ill-defined functions in the biogenesis of the CuA site of cytochrome c oxidase subunit II (CO II). Here, we have used patient cell lines to investigate the specific roles of each SCO protein in this pathway. By pulse-labeling mitochondrial translation products, we demonstrate that the synthesis of CO II is reduced in SCO2, but not i...

متن کامل

Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase.

Maturation of cytochrome oxidases is a complex process requiring assembly of several subunits and adequate uptake of the metal cofactors. Two orthologous Sco proteins (Sco1 and Sco2) are essential for the correct assembly of the dicopper CuA site in the human oxidase, but their function is not fully understood. Here, we report an in vitro biochemical study that shows that Sco1 is a metallochape...

متن کامل

COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux

SCO1 and SCO2 are metallochaperones whose principal function is to add two copper ions to the catalytic core of cytochrome c oxidase (COX). However, affected tissues of SCO1 and SCO2 patients exhibit a combined deficiency in COX activity and total copper content, suggesting additional roles for these proteins in the regulation of cellular copper homeostasis. Here we show that both the redox sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 13 17  شماره 

صفحات  -

تاریخ انتشار 2004